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SECTION I

APERTURE REPRESENTATION BY A PAIR OF DIPOLES

a

A convenient approximation of the electromagnetic field in the

presence of a small aperture is in terins of a pair of dipoles, as

originated by Bethe [1]. Assume that the local distribution of the

• total electric field 
~~

(x ,z) over an aperture in x-z plane, such

as in Fig. 1. (a), has been determined by an analytical or a numerical

a solution of the boundary-value problem . Then, the electromagnetic

field in the “internal” region y>0 remains unchanged if the aperture

is closed by a metal lid on top of which there is a magnetic surface

current

~5
m(X,Z) = 

~~
(
~c ,

z) ~ (1)

where is the unit vector in y direction.

The coupling to the TRI wave on the system of conductors can

be then ccmp.ited by replacing the aperture with a conducting lid on

top of which there are two dipoles , 
~e and as shown in Fig . l .(~).

Electric dipole moment is oriented in y direction:

c~ , =ffJ
’X (X~Z)dXd Z~ 

(2)

and the magnetic dipole moment of interest here is oriented in x direction:

p 
c~~ — JwcJfzJ~~x~z)dxdz. (3)

5
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Fig. 1(a) Malticonductor transmission line with a small aperture.

— Fig. 1(b) The aperture is replaced by a pair of dipoles.

Cc)

Fig. 1(c) Magnetic and electric surface currents which are equivalent to the
pair of dipoles.
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The magnetic dipole moment may also have the z-ccinponent, but
a

the present report is devoted solely to a coupling of quasi-TE~1 waves

guided along z direction by a system of conductors as indicated in

Fig . l .(b) . Theref ore , the z component of the magnetic dipole is

of no importance, because it does not interact with these quasi-TFI’4

waves.

In this report, the electric dipole moment 
~e 

(in Ampere~meters)

has a meaning of the moment of an electric current element, similarly

as in references [2]-[4}. This current moment should not be confused

with the electric charge moment ~ (in Coulomb ‘meters) such as used

for example in references [5J-17] . The relationship between these

two moments, for exp(jwt) variation, is as follows:

(4)

Similarly, the magnetic dipole moment ~~ (in Volt .meters) in

this report denotes the moment of the magnetic current element , in

the sense as used by references [8]-.[lO]. The magnetic charge moment

ift (in Ainpere ’ square-meters) , such as used for instance in references

[5]-[7] is related to 
~m 

as follows:
• p

- 

~m 
= jwii;;. (5)

Figure 1.(b) is a first-order equivalent of the original
p

configuration from Fig. 1. (a). Sometimes, it is convenient to further

change Fig. l.(b) into an equivalent configuration in Fig. l.(c) In

which there is a distribution of the surface magnetic current and
p - 

•

of the surface electric current over the x-y plane. Figures 1.(b)

and l.(c) are equivalent if the surface currents become delta functions

as follows : 7
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a

= Ce X~~~)~5(Y) ~ (6)

p
-

• 
~-m 

= c~ S(x~x0)s(y) . (7)

For an aperture of general shape, integrations (2) and (3) are

to be performed numerically. For several characteristic shapes (circle,

ellipse, narrow slit, square, etc.), the dipole moments have been com-

puted or determined ex~ erimentally. It is customary to express the

moments in terms of the excitation fields 
~~~

, i~I~ and in terms of the

polarizabilities CLeF am. Consider the aperture in Fig. 2 which is to

be replaced by the dipole moments so tha t the field in the “internal”

region y > 0 is maintained, The excitation fields (so-called short

circuit fields) produced by the sources located in the interna l region

will be denoted ~~~1flt and 
~~~~~~~~ 

1S~en the excitation comes from the

side y-< 0, the short circuit fields will be denoted by t ext and n ext

For the purpose of coupling to the quasi-TR4 waves in the internal region,

only the components E)~5 and are of interest. Instead of per-

forming the numerical integrations from (2) and (3) , the dipole moments

of small apertures of characteristic shapes may be computed as follows:

c~~ = •j wMc*m 0’~x~~~ 
- ~çflt ) , (8)

ext m tCey = )wcae (E~5 - E~5 
) . (9)

The electric polarizability ae and the magnetic polarizability ct~ of a

circular aperture of diameter ci are :

8
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For a square aperture of side 9, Cohn [111, [121 has measured the

following polarizabilities:

= 0,li37~~ , x~ O.259O2.~

The last two references also contain the measured polarizabilities for
p

rectangular and other shapes of apertures.

In Fig. 5, a plane wave is shown incident from the y < 0 region.

The two possible polarizations of the plane wave are denoted TE and
p

111. The corresponding dipole moments are computed from (8) and (9) by

substituting the following excitation fields :

p 

‘mi: E
y
:Xt = 2E0sin 0, HX:Xt = - sin a (11)

TE: E~~
Xt 

= a , H eXt 
= 

0 cos 0 cos ~ (12)

For this excitation, take E~~
t 

= 0 and Hx~~
t 

= O•

When electromagnetic fields in the presence of a ground plane

are considered, sometimes it is convenient to remove the plane and

replace it by appropriate images. In the present report the ground

plane has not been removed and the images have not been invoked.

p
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When dipole moments c~~ and cey have been determ ined , it

is possible to compute the amplitudes of the outgoing guided waves

created by these dipole moments. In Fig. 3, the scattering ampli-

tudes of the TEM guided waves traveling in the positive and

negative z direction are denoted by a5 and b5. Using the appro-

priate boundary conditions in the xy plane, the following scattering

• amplitudes a5 and b5 are obtained [131 :

a5 
= 

~L 
[_c

~~
hxrd~

(xO, O)- ceye~ .EM(x0~O)J~ 
(13)

b5 = 
~~

- [c~~hxTEM (x0, O) - ceye),TEM(x0~
O) l .  (14)

The scattering amplitudes are complex numbers, normalized in such

a way that 1a 5 1 2/2 and Ib 5~
2/2 are powers of the outgoing waves

traveling in positive and in negative z directions [141.

It should be noted that Collin [14] uses superscripts (+) or

C-) to denote the direction of the wave propagation. In the present

report , letter a denotes the complex amplitude of the wave traveling

in the positive z direction, and letter b is used for propagation

in negative z direction. These are the familiar scattering param-

eters [15].

• 12
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SECFION II

TRAVELING WAVE FOR~”ULATION
p

Lossless nLilticonductor transmission lines (MFL) with unequal

• conductors and inhomogeneous dielectrics give rise to nultivelocity

quasi-iTh waves. As shown in the Appendix C, the voltages and currents

on a MFL are described by

• N -j B . z j 8 .z
IV(z)> = ) (a.e 1 + b1e 1

)1,. > , (15)
• n=1 1

N -j B~z j 8. •z
1(z)> = 

~~ (a1e - b~e- 1 ) J *~> . (l6~n=l

and ~p1> are normalized voltage and current eigenvectors, and

at ’s and bk’s are scattering amplitudes of the waves traveling in positive

and negative z direction , respectively. It is assumed that on an N

conductor !vfl~L there are N normal modes , each of them having a~distinct

propagation constant

The notation from (15) and (16) may be made more compact by introducing

the vectors of incident and reflected nonnal-mode amplitudes

al -

I a > =  : , b > =  : (17)
aN bN

and by introducing the diagonal matrix E(z) containing the exponential

functions
j8z iBN Z

E(z) = diag . (e , L.. . ., e ) US)

13
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‘ p
In the new notation, (15) and (16) become:

IV(z)> = ~~(E*(z) I a> + E(z)(b>) , -(19)

-
• 

(1(z)> = M1(E*(z)(a> - E(z)(b>) , (20)

I
where * denotes a complex conjugate number , and and are matrices

consisting of voltage and current eigenvectors, as defined by (C-42)and (C-43).

(19) and (20)may be now solved for a> and Ib> :

E*(z)J a> = ~(M JV( z)> + ~~ j I(z)>) , (21)

• E(z)~b> = ~(~~ IV(z)> 
- !~ lI (z)> ) . • (22)

(a> is a constant vector containing the amplitudes of the individual

modes as its components. For instance ,a1 is the complex amplitude such that the

• 
total power of the i-th mode transmitted in positive z direction is

+ 1 2P. ~rJa .J1 L i  -

The entire power of all the modes traveling in the positive z direction is

= ~..~za(a> (23)

where < a( denotes a transpose conjugate of a>, Similarly, the entire

negative-traveling power is

P ~.b  b> . (24)

The net power is the difference of the two, On a uniform MTL there is

no exchange of power between different modes . Each mode travels with

- 

—
~~

- •- •

•- _ _



constant magnitude, while its phase grows linearly with distance.

The z dependence of scattering amplitudes may be expressed as 
•

Ia(z)> E*(z)l a> 
• 

(25)

and

(b(z) > . = E(z) ( b> (26)

where (a> and Ib> are vectors consisting of complex constants , This ,

the i-th component - of the vector equation (25) is

-j8.z
a1(z)=e 

‘a
~

and the corresponding i-th component of (26) is

j 8~zb1(z)= e b
~

The signal flow graph [].6]of the MTL section of length 2. is shown in Fig. 4.

The i-th mode has two variables a
~

(O) and b1(0) at z=0. Similarly, at

z=L the two variables of the i-th mode are a. (2.) and b. (2.). The coefficients
_ j8~2. 

I

of matrix E*(2.) equal to e . Thus, a1(2.) is obtained by multiplying-j8~2.a
~
(O) by the coefficient e . The signal flow graph

in Fig. 4 is extremely simple, since along the transmission line there

is no cross coupling between different modes.

Figure 5 shows a 1.!FL section with 3 conductors above the ground plane.

At z=0, a source is coupled to the MrL, inducing the waves traveling toward

+z and -z directions. The amplitudes of the i-th mode produced by the

source are a15 and b
15

, The direction of propagation of these

waves is indicated by a wavy arrow, The wave traveling in +z direction

arrives at z 9.4 shifted in phase for e 1 There, a three-port net-

work terminates the MTL. The impedance matrix of this network is

• 15
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Fig. 4. Signal Flow graph of a MFL section.
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Fig. 5. Terminated MTL with a source of outgoing waves located at z = 0.
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The amount of reflection on the ?ffL can be computed frcmr as follows,

At z 0 , the total amplitude a1 of the i-th mode traveling in the

positive z direction consists of two parts: the source part a~5 and

the part which arrives reflected from the left-hand termination at

z—-L3. The total amplitudes cf all waves at z=0 are arranged in vector

(a> . Then, the vector of all waves arriving at z=t4 is

=

Fran (21), this is furthermore equal to

Ia(t 4)> = 
~{f4IV(L4)> 

+ ~J~f 1(2.4)>) . (27)

From (22), the reflected mode vector at the end of line is

(b(L4) = ~~~IV(2.4)>- ~~ I I(L4)>) . (28)

The currents and voltages at the load network terminals are related

through~~~
-

• 

(v(L4
)> = ~~J I (L 4)> . (29)

By eliminating V(2.4)> and 11 (2.4)> from the last three equations one

— obtains
= ~~Ia(L~)> (30)

where the reflection matrix at port 4 is

(31)

17
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When the load impedance matrix is equal to the characteristic

impedance 
~L= one has a reflectionless termination, as can be verified

by (C-46) and (C-SO). Otherwise,~~ is a matr ix which has usually non-

vanishing off-diagonal elements. This means that a single incc.in.ing mode

a1 produces a multitude 
of reflected modes b

3
(j=l ,2,3, etc.). Thus,

energy transfers from any one mode into all other modes.

This fact is illustrated in the signal-flow diagram on Fig. 6. On

top of the f igure, a15 represents the amount of energy coupled from 
an —

external source to mode 1, traveling in +z direction. The total wave

amplitude a1 at the origin, 
consists of a15 plus the wave which 

was

reflected from the termination at
-j 8L3a1 = a15 

+ a1(- 2.3)e . -

This wave arrives at port 4 as
-j819.4

a1(t4) 
= a1e . -:

A portion of this wave goes back as a reflected wave of the mode 1:

S4 11a1 (2.4)

where S4,11 is the coefficient (1,1) of the matrix

Another portion of the wave a1 (9.4) goes to the en h ancenient of the

reflected mode 2:
S4 2 1a1(2.4)

and so on, as shown in Fig. 6. For example, the total reflected wave

of the mode 2 is

b2(L4) — S421a1(L4) + S4 2 2 a2 (L4) + S423a3(L4)

Similar situation occurs at port 3, where the load network Z~~is attached .

There, the reflected wave is

la(-L3)> — §3(b( -& 3)> , (32)

18
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Fig. 6. Signal flow graph of the M~L from Fig. 5.
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with

53 
= (M’~~~ M1- !D ~~I ~L3 ~I + U)~~ (33) S

The above discussion was based entirely on the frequency-domain

considerations, where each mode was a steady-state sinusoidal function

of time. Assuming the quasi-TBI waves are non-dispersive, an arbitrary

waveform is transmitted by each mode without a distortion , Therefore,

for mode i, the wave a14(t) traveling in the ~z direction at the port

4 is just a delayed waveform which started at the origin as a
~0

(t):

a
~4
(t) = a.0(t ~5-) (34)

Since the waves are now functions of both time and position, the second

subscript is used to specify the position: 0 for origin , 4 for z=2.4 etc.

The time-table of the outgoing and reflected waves on a 3 conductor

line is presented in Fig. 7, At z=O, the three waves start to travel to

the right:

a10(t) , a20(t) , a30(t)

and similarly the three waves start to travel to the left

b10(t) , b20(t) , b30(t)

Each wave travels with its mode velocity v~, At t=t1, the first wave

arrives at port 4:
— 

2.4tl—
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Fig. 7. Time-table representation of multiple reflections on the terminated MIL.
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Its shape is a shifted shape of the wave which started from the origin,

according to (34). This wave produces three reflected waves, which then

travel with their corresponding velocities back in the negative z direction.

When the load network contains inductances and capacitances, the shape

of the reflected waves will be different from the incoming waveshape .

For simplicity, consider the case when the load network is purely re.

sistive. In that case, the reflected- waves will be of the same shape

as the incoming waves. The amount of reflection is specified by (30)

and (31), where 
~ L41S a purely resistive network, thus has also

purely real elements. The reflections from the left-hand termination

are handled in an analogous manner ,

• • 22
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- • As demonstrated above the scattering repre-

sentation in terms of vectors a(z)> and Ib(z)> is very convenient

for the treatment of propagation and reflection of waves on a !SffL.

Nevertheless, often it is necessary to compute explicitly the voltages

and currents on individual conductors, They are specified by vectors

JV(z)> and (1(z)> . The transformation from scattering variables to

the currents and voltages is obtained from (19), (20), (25), and (26)

as follows 
-

-• IV(z)> = ~~~~a(z)> + (b(z)>) , (35)

(1( z)> = M1(I a(z)> - Ib(z)>) . (36)

The inverse transformation is obtained from (21) , (22) , (25) , and

(26):

la(z)> = ~~ 
(~~IV(z) > + ~~~I(z)>) , (37)

Ib(z)> = ~ (M (V( z )> - ~~l I ( z)>) . (38)

Note that the components of scattering vectors (a(z)> and (b(z)>

correspond to the individual normal modes , while the components of the

voltage and current vectors JV (z)> and JI(z)> correspond to the indi-

vidual conductors. As an example, a1 is the complex amplitude of the

i-th mode. On the other hand, V1 is the voltage of the i-th conductor

w.r. to ground.

• - 23
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Fig. 8. (a) shows a section of MI~L of the length 9., The voltages

V1(z) are specified between each conductor and the ground, where

t - the conductor side is considered as positive. The currents I1(z) on

the individual conductors are specified positive when flowing in

(+z) direction . This apparently trivial fact is pointed out because

r by using this convention, the current at z=9. points out of the M~L

section, which is not customary in the network theory. However, the

present convention is found to be more natural for the matrix

manipulations which follow. The consequence of this convention is

that the total power

P=~~ Re<V~I>

is not always pointed into the network, as customary in network theory,

t*it here P represents the power flow in the positive z direction.

Thus , at z=0, P is into the ?.ffL, at z=9. , P is out of the MTL.

The use of a> and (b> variables in place of ~V> and (1>

• variables is indicated in Fig . 8.(b) . At each end of the ?v!fL there

is a transforming network NT, which transforms the variables according

to (35) - (38) . At z=0 , the left-hand terminals of N.y. are the actual

M1’L conductors. Here, the variables are jV(O)> and 11(0)> . The

other side of NT network has the mode variables la(0)> and Ib(0) >.
Each mode is represented by a fictitious single transmission line,

shielded from all the other lines . Each single transmission line

passes the wave through by simply adding the phase shift (-~~9.) as

follows -j~ .2.
a.(2.) a.(O)e ~

At the other end of the MFL, at z=9.., variables Ja(2.)> and Ib(9.)> are

transformed back to variables IV(9.)> and (1(2.)> in another identical

transforming network NT.
• 24
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Fig. 8(a) . MFL section of length 9..
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Fig. 8(b) . Equivalent circuit for normal modes .
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SECTION III

EQUIVALENT SOURCES FOR APERTURE EXC ITATION

Each normal mode is described by its scattering amplitude a1
(waves traveling in ~z direction) or b1 (waves traveling in -z

direction). The detailed distribution of the electric and magnetic

field, for the i-th mode traveling in +z direction, is

~1(x ,y,z) = a1e 
1 e1(x ,y) , (39)

fl~ (x ,y, z) = a1e 
1 h~(x,y) . (40)

and are the normalized modal field distributions over the cross

section of the MTL. The total power transmitted by the i-th mode

traveling in ~z direction is obtained by integrating the Poynting

vector over the cross section :

= ~~ReJf [~j (x~Y) xii ](~,y)1. d

cross sect ion

For normalized modal field distributions

ff[~j
(x iy) x ç(x,y)].d = (41)

cross section

and the power transmitted by the i-th mode is

+ 1  ~2

in accordance with circuit theory.

Fig .9 . (a) shows the junction representing an aperture on a MtL.

The aperture is excited by an external field from below the ground plane .

26

k. - _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _  

- 
- -  -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _  

________

- p

Modes Modes
Terminals Terminals I

L t b -

4, I SI SI I
I—’4’V\ ttJ *’- $

-

• ‘ I  I ~~ 2 9 9~~~~2 b52 ~~~~ ______

L ~_ _  _ _

~~ 
b~3-.*~.r~ (p~~ii... ~~~53• 

- 
~~ ?-•-c;?-——c?---? 

~
(
~

) L (b)
Fig. 9(a) . A junction with an aperture. Fig. 9 (b) . Normal-mode sources .

Terminals Terminals

l’s
‘LI V~ ‘RI
-

~~~~~

V
uith~~~ I~

2
1L311 ~

Is3 
~~~~~--zu~ 1VR3~~I(~ )I $3

I I
I I
L R

(c)

Fig. 9(c). Voltage and current sources.

27



— ‘,~~-,—-~~~~ -~ — 

-- • - - 
- - - ‘~~~~~ “ . f l r~~ , ~~ - -

1-

This excitation is replaced by an equivalent pair of dipoles t~~~ and

Cey~ In what follows, an equivalent circuit will be established for

the junction between the two infinitely close planes, denoted by

L and R (letters stand for “left” and “right”).

Accordi,ng to (13),, the dipole pair c.~ and Cey excites the i-th

mode traveling in +z direction as follows

a51 = 
~

• 
~c~~

h
~~

(x0,0) - -  

~ey
eyi~~o~

O)1 . (42)

As indicated previously, a convention in the present report is that

the waves traveling in ÷z direction are denoted by a1, while the waves

traveling in -z direction are denoted by b~~
e Therefore, (42) gives a

sairce of the traveling mode in +z direction, and is denoted by a
~1t

4 traveling wave source is ~ three-terminal device, as explained in

A~pendi~ B.

Another word about the notation in (42): h
~~

(xü , O) is the x-ccxnponent

of the magnetic-field modal distribution of the i-th mode , evaluated

at the point x=x0 and y=O, Similarly eyj(x0~O) is the y-component of

the normalized electric modal field.

For the traveling-wave source of the i-th mode propagating in

-z direction, the following is obtained from (9):

b5~ = 
~L 

[_c
~~
h
~~
(x0,0) - c~,e~~(x0~O)] (43)

Fig. 9-. (b) shows the modal sources between the left and right

reference planes. This equivalent circuit is appropriate for an analysis

in terms of scattering coefficients . The equivalent circuit in terms

28
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of voltages and currents can be now obtained by a simple matrix

manipulation. First, define the vectors containing the scattering

sources as follows: -

a51 b51
Ia5> , (b 5> = . (44)

• asN 
- 

bsN

The traveling wave vector, taR> traveling in +z direction out of the

right-hand reference plane is a sum of the source vector (a5> and

the wave vector I a~> incoming from the left upon the left-hand reference
plane: -

-
• aR> = laL> + Ia5> . 

(45)

Similarly, the waves traveling in the -z direction are related as

bL> = IbR> + Jb 5> . (46)

The voltage and current variables of the source junction are

shown in Fig. 9. (c). The voltages and currents at the left-hand

plane are defined by 1VL> and 1
~L

> while the right -hand variables

are (VR> and (IR
>. The current sources from Fig. 9.(c). constitute

vector ~I~> while the voltage sources make (vs>
, The Kirchhoff laws

require
IVL> + 1V5> = 1V~> (4~)

and

I l L> + 1I~> = IR> (48)

To change from scattering representat ion to voltage representation ,

use (35)

IV~
> = VR>~ IV L> = 

~~
(IaR>-I aL> + Ib R>-Ib L>)

29
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By virtue of (45) and (46):

— 1V5> = ~~{(a5>— fb 5>) . - (50)

The components of Ia5> and Ib5> are given by (28) and (29)
, The

difference term is

a
51 

- b
51

- = 
~~~~~ 

(x0,0) (51)

and it depends only on the magnetic dipole excitation. Thus, the

voltage sources in Fig. 9(c) are to be computed as follows:

c~~h 1(x0,O)
fv~> =~~~ . .‘ . , ,. ., . .  . 

(52)

c~~h~~(x0,0)

The current sources are similarly found as follows

II~
> = 

~ 
(Ia5>÷ Ib5>) . 

(53)

The sun term depends entirely on the electric dipole moment

a5~ 
+ b5~ = ceyeyi (xo, O) , (54)

so that the formula for computation of the current sources becomes
cey eyi (xo~

O)

= ...., ..,.. .. (55)

cey e
~~

(xo~
O)

In the above derivation, the energy storage at the junct ion was not

taken in the account. The circuits from Fig . 9 . ( b) and (c) are thus the

zeroth-order equivalents, such as the zeroth-order equivalent of a single

transmission line from reference [131 .

30

_________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
- 
- - -- - -  

- - j  - 

- - 

A



1
1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 
-~~~

SECTION IV

EXNvIPLES OF VOLTACE WAVEFOR~~

The voltages induced on a 2-conductor transmission line

filled with inhomogeneous dielectric will be now computed in order

to illustrate the use of the theory developed thus far. The system

is shown in Fig. 10. A small circular aperture of diameter d = 2 cm

- • is located at z = 0. The two-conductor transmission line is located

betweenz-~-L3 -7mandz L4 = 5 m .

The cross section of the transmission line is shown in Fig. 11:

it consists of two strip conductors of width w, placed between the

three layers of dielectrics denoted El~ 
£2, and c3. The dielectric

thicknesses are denoted by h1, h2, and h3. This parallel-plate

model of the transmission line is selected because of its simplicity ,

and it will be used to illustrate the procedure of computing

voltages induced by an EMP wave . The electrostatic field within the

transmission line from Fig. 11 may be produced in two independent

ways. In the excitation A, a potential Va is apjilied to conductor

a, while conductor b and -the shield are held at zero potential. Then,

the fields in the three regions are

~~
Va V

~2A~~~

In the excitation B, a potential Vb is applied to conductor b, while

conductor a and the shield are held at :ero potential. The corresponding

fields are

31
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Fig. 11. Parallel-plate 2-conductor transmission line.
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* * * + Vb
~lB 

= ‘ 
~2B ~ay h~ 

t3B = a>, ~~

• 
Under arbitrary excitation the fields in the individual regions

Ci = 1, 2, 3) are obtained by superposition:

~

i = Va ~ia 
+ Vb ~ib . (56)

In order to compute the coefficients of electric induction

matrix, one must find the charge per unit length of the conductor a.

This is accomplished by integrating the electric flux through the

closed surface Sa around the conductor a:

~a fE ~~. d ~

Sa

where z and ~ depend on the point of integration. Using (56), the

charge 
~a 

is found to consist of two parts , one proportional to Va
and the other proportional to Vb.

Qa a f A
.
~~~~~~b f

cc5
~~~

(57)

= VaKaa 
+ VbKab

The constants of proportionality are called induction coefficients,

denoted Kaa and Kab• They depend only on the geometry of the system.

For example, K~~ is computed as follows: •
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w/2 w/2

K~~ = c 1 ~~~~• a d x - c  ~3~~~~aydX

- - 
x=-w/2 x=-w/2 -

r 
Kaa = w ( T ii +

~
) (58)

Similarly, the other induction coefficients are found as follows:

Kab = 1
~a 

= (59)

- 

Kbb = - W { 
~~~ 

+ - (60)

These coefficients form induction coefficient matrix K

K Kaa ab
K (61)

- 
ab Kbb

As an example of a symmetric system, the following dimensions have been

selected:

h1 = 2 cm, h2 = 2 an , h3 = lan, w= 10 cm, = 1.0,

C2r = 1.0, C3r = 2.0, d = 2 an.

The corresponding matrix K is

34
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The induction coefficient matrix with only ajr as dielectric will be

denoted K’ :

15 -10
K ’ = c
— 0 -10 15

By using matrices K and K’ one can find the modal velocities, voltage

and current eigenvectors, and the impedance matrix by the procedure

described in Appendix C. The inverse of the induction matrix L is

directly proportional to K’ as follows

L~~ =c 2 1(’ (62)

where c is the velocity of the light in vacuum. Next, the eigenvectors

and eigenvalues of L4 are found, and an auxiliary matrix B is formed

according to (C-l5). When the eigenvalues of B are computed, the modal

velocities v
~ 
are found as their inverse square roots, according to

(C-l6). The eigenvectors of B are then used to form the modal matrices

and M1, according to (C-42) and (C-43):

~a1 ~a2 
-6.136 -2.369

(63)
— 

b1 ~
‘b2 -6.136 2.369

‘pal ~
‘a2 -0.081489 -0.21106

= = (64) - —

~bl ~‘b2 -0.081489 0.21106
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Subscripts a and b denote the conductors, and subscripts 1 and 2

denote the modes.

Next, modal functions e
>, 
and h

~ 
will be evaluated. The aper-

ture is placed at the center of the bottom shield conductor, as shown

in Fig. 11. By definition, the electric field of the ~th mode trav-

eling in positive z direction is

~~(x,y,z) = a
n~n

(x,y)e ~ n (65) - 

-

By selecting an = 1, the electric field atz = 0 becomes

~~(x,y,0) = ~~ (x ,y) (66)

When a~ = 1 and b~ = 0, the voltage vector is obtained from (35) 
—

as follows

I Vn > = 
~n > = {:) (67)

Thus, in order to find the modal function of the mode n (here,

n = 1 or 2), the potentials on the two conductors must be selected

equal to and 
~bn as shown in Fig . 12. Then the modal function is

equal to the electric field, according to (66). Since the field has

only the y componc~~, Ui: result is

e
>,~ 

= ~~ ~~~~~~~ + 
~bn

Ey2B 
= ..-~~! (68)

The modal function ~~(x,y) is equal to the magnetic field i
4
in(X~

y
~
0)

inside the transmission line, when conductor a carries a current

• 36
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and conductor b carries current ‘b = 
~bn~ 

The situation is shown

in Fig. 13. The currents are assumed to be uniformly distributed over

the conductor surfaces. An elementary computation gives the following

value for the magnetic field modal function :

4’ h1 + 4’b (h + h3)h _ an n l
w(h1+ h 2 + h 3)

* In the example treated here, a time domain response will be evalu-

a-ted, while most of the theory presented until now has been formulated

in the frequency domain. In order to use formulas (8) and (9) for a

general time variation, they are rewritten as follows:

a I Hext Hint)— 

~ m 5t~ xs 
- 

xs j (70)

cey = Ccie 
~~~~~~

. f E~~ - E~~t) (71)

The polarizabilities cirn and cie are given by (10).

The incident wave orientation is specified by angles ci and 0 as

shown in Fig. 3. Then for a Thi polarization , the field components of

importance are

E~~t = 2E0F(t) sino , He~c~ = - — .j ~!F(t) sinci (72)

An arbitrary time variation of the incident plane wave is described by

function F(t). For EMP wave, a simple function is selected as follows

-ci1t -~ 1
t

F(t) = e - e  (73)
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Fig. 12. Evaluation of the electric field on the line from Fig. 11.

y

h
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w

Fig. 13. Evaluation of the magnetic field on the line from Fig. 11.
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having the following derivative

- at  -B1tF’ (t) = -a1e 1 
+ 81e . (74)

The following parameters of the incident plane wave have been

selected for the present example:

E0 = lookV/m, a = 30°, 0 = 45°, a1 = 3.106s4, 
~l 

= io8~~
i .

The electric and magnetic current moments are now computed by (70)

and (71) :

3
c~~ = 2 ~ ~~~~

- E0F’ (t) sina , (75)

3
cey = 2 ~~~ E

0
F’ (t) sinO (76)

These values are to be substituted in (42) and (43) in order to compute

the traveling wave sources for different modes on-the multiconductor

line. For the present example, the modal functions e~1 and h~ which

are needed in (42) and (43) are determined by (68) and (69). The ini-

tial amplitudes of the traveling wave sources can be now computed and

the inultipole reflection traced down in a manner indicated in Fig. 7.

As long as the loading at each end of the multiconductor line consists

of pure resistances , such as in Fig. 10, the wave shape remains unchanged

after each reflection, and is specified by the function F’(t) from (74).
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In the first example to be computed, the following loading

resistances have been selected:

RaL 
* RaR = l’(~~ 

~bL = = l00~Z , R
CL 

= R
CR 

l~2

The load impedance matrix of a T network is then obtained as

ZL11 = R~~~ + RCL = l.OOllc�l

ZLl2 = R cL = l
~

ZL22 RbL 
+ R~ = 1.00lk�~

The corresponding scattering matrix is obtained from (33)

0.43488 0.17495

0.17495 0.90584

Since the load resistances on the right-hand side are the same as on

the left-hand side , §4 = S3. For each incident wave a~ at the port 4 ,

the reflected waves are computed by

b~ = S~~a1 for j = 1, 2

Then, the voltages are obtained from (35)

IV> = 
~~~ (Ia> + Ib>)
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The velocities of the two waves are v1 = 3.108 rn/s and

V
2 

= 2 .236 . 10 rn/s. Fig. 14 shows the voltages on the right-

hand end of the transmission line. V1 is the voltage on the con-

ductor a , while V2 is the voltage on the conductor b. First

pulse arrives at t1 = £4/v1 = 16.6 ns. Note that this is even

mode , since the polarity of the pulse is the same on both conductors.

Shortly afterwards,. at t2 = ~4/v2 = 22.4 ns , the odd mode arrives
V producing a positive pulse of V1 and a negative pulse of V2. The

next arrival is the group of four waves which are reflected from

the left-hand end of the line, and the process is continued through

multiple reflections bouncing back and forth on the line .

At each of the bounces, some of the energy is lost in resis-

tances terminating the line, so the process gradually dies off as

seen in Figure 14. If one end of the line is terminated in a resis-

tance matrix equal to the characteristic impedance matrix j~, there

are no reflections from that end. In the next example, we terminate

the right-hand end of the MTL by a matched impedance. The necessary

resistances are obtained from as follows. First is computed

by (C50)

43.260 32.036

32.036 43.260

Then, the resistances of the T-network are obtained as

= Z011 
- Z 012 = l l.224c2

R. = Z - = ll.2’4c~bR 022 ‘
~0l2

= = 32.036c7
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Fig. 14. Voltage waveforms on a 2-conductor line: moderate mismatch.
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With such a matched termination on the right-hand side, the resulting

voltages take the shape as shown in Fig. 15. The first arrival of

V the odd and even mode is similar to the previous situation in Figure 14.

Also, the next four pulses are similar to those from Figure 14, but

after that there are no more waves left on the line.

Another extreme situation occurs when there is no attenuation ,

because the terminations consist of open-circuits or short circuits.

In Figure 16, the following terminations have been selected

V RaL = R~~ = lkc2, RbL = RbR = 0. th R
L 

RcR = 0.01 ~?

There is little attenuation of the voltage waveshapes in the first

300 ns , and the multiple bouncing on the transmission line continues
I’ for a long time.

The computer program evaluates the individual pulse arrivals in

the close analogy with the time-table from Figure 7. If the 1’-II’L can

support N different modes, each of those produces N other reflected

modes at each bounce . Very soon the storage requirements become

prohibitive. For a 2-conductor line of the total length 12 m as in

Figure 10, there are 510 pulse arrivals within 300 ns. If the number

of conductors is increased to three , there are 9840 arrivals which are

to be stored before sorting them in chronological order. It is obvious

that this procedure is practical only for computing the early time

responses.

An example of the three conductor parallel-plate MI’L is shown

in Figure 17. The voltages on the individual conductors are denoted

by V1, V2, and V3.
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Fig. 15. Voltage waveforms on a 2-conductor line: matched load at left-hand
terminals.

44

V - - - — - - —-- V 
~~

--



r 
r__ ~~~

_
~~~~~~~~~~~~~

V
~~_____________ 

V ____________________

& 
F

V 

~~ V 

_ __ __

~~~c .

(0

U

0. 
1‘0.00 50.00 100.00 1~0.00 200.00 2~0.00TIME IN NANOSECONDS

‘0.00 sb.oo i’oo.oo 1~o.oo 2bo.oo 2~O .OOTItlE IN NANOSECONDS
Fig. 16. Voltage waveforms on a 2-conductor line: large mismatch at both ends .

- - _____ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .4



~ 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

- ----—-- -- - -

.00 IbO .00 2~4O .00 9~~ O .00 4b0 .00
TIME IN NRNOSEC ONOS

eb.oo tbo.oo 240 .OO 3~O.0O 400.00

T IME IN NRNOSECONOS

>
*

-I

‘0.00 eh.oo tbo.oo 240.00 3~0 .O0 400.00
TIME IN NANOSECONDS

Fig. 17. Voltage waveforms on a 3-conductor line: moderate mismatch .
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All the examples computed in this Section utilize a parallel-

plate model of the MI’L with inhonogeneous dielectric , because of

the availability of simple formulas for the evaluation of induction

coefficient matrix J~ 
and of the normalized modal functions ey(x0~O)

and h
~

(x0,0). However, the same procedure of computing the voltage

waveforms may be applied to any other set of data for K , ey and

which may be obtained by a numerical solut ion of the arbitrary

shapes of conductors . Several numerical procedures for computation

of the induction coefficient matrix K have appeared in the recent

literature (see [16] to [18]). If these methods are supplemented by

computation of e~(x
0~0) and h~

(xo,0) at the aperture center, the rest

of the computations of voltage waveforms described in this Section

is applicable to arbitrary conductor shapes and sizes.

16. W. 1. Weeks, “Calculation of Coefficients of Capacitance of
?.tilticonductor Transmission Lines in the Presence of Dielectric
Interface,” IEEE Transactions Microwave Theory Techn . Vol. ?~1IT-18,
pp. 35-43, Jan . 1970.

17. J. C. Clements, C. R. Paul, A. T. Adams, “Computation of the
Capacitance Matrix for Systems of Dielectric-Coated Cylindrical
Conductors,” IEEE Transactions on Electromag. Compat. Vol. EMC-17,
No. 4, pp. 238-248, Nov. 1975. Also see Correction in EM -l8
No. 2, pp. 88-89, May 1976.

18. C. R. Paul, “Computation of the Transmission Line Inductance
and Capacitance Matrices from the Generalized Capacitance
Matrix,” IEEE Transactions Electromag. Compat., Vol. F1t-18.
No. 4, pp. 175-183, Nov. 1976.
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SECTION V

V FIRST-ORDER EQUIVALENT CIRCUIT OF THE SMALL APERTURE

In Fig. 18 , a set of incident waves coming from the left is described

— by l aL>. The aperture region is located between two planes denoted L

ani R. There is no incident wave coming from the right, bR> = 0. The

waves laL> excite the pair of dipoles Cey and c~~. The excitation field

produced by the j-th incident mode is

H~~~~
’
~~ = aU ~~ 

(x0 , 0) (77)

= a
LJeYJ 

(x0, 0) 
- (78)

This is an internal field, according to Fig. 2. From (8) and (9),

the dipole moments produced by the j -th mode are

~~~~~~ 
= 

~~~m
1
~xj~~O’~~~Lj 

(79)

Ceyj 
= i~~~eeyj(xo~o)a~j (80)

Si.mined over all the incident modes:

CJm~~ 
j
~~
iam ~~

h .a
L .  , (81)

Cey = ~~~~~~ 
e
YJ
a
UJ 

(82)

where argument (x0,0) has been ommitted for brevity.

These dipoles produce the outgoing waves . Their i-th component

is, according to (13) and (14):
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Fig. 18. Aperture junction with sources. 
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Fig. 19. Signal flow graph of the aperture junction with sources .
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1a~~ = 2[~
c
~~
hxi(xo~O)ceyeyi(xo~O)l4 aL~ , (83)

bLi = 
.
~[cn.,~~~.(x ø, 0)~ ceyeyi(x 0~0) J  . (84)

In what follows, argument (x~,O~ wIll ~-e omitted for brevity. In (83)

the i-th mode outgoing ~~ at n i ght-hand plane in Fig. 18 con-

sists of the (unattenuated) inciic r - ive aLl and the wave originated by

the dipole. Using (81) and (82) -

= a
~~

+ ~~~~~~~~~~~~~~~ 3~~~ e~~1
eyjaLj1 (85)

bLi 
= 

~~~m~
’xi j~l 

hxjaLj 
+ j

~~~
ae j~l 

eyjaLj] . (86)

This can be written as

~a~> =  ( U- j H + j E )l a ~> , 
(87)

~
bL> = U ~j + j E) laL> , 

(88)

where the real, symnetric matrices H and E are defined by

mhxihxj 
(89)

ij 
= 
~~~ e

eyieyj . (90)

Thus, the scattering matrix of the aperture junction, in partitioned

form is

~ I laL>

aR> T R bR> 
(91)

so

______________ ______________ _______ 
- _ - 7 -  - 

~~~~~~~~~ 
V V A
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where

R =  j H + j E  , (92)

1 =  U - j H + j E  . (93)

The signal flow graph [16] is in Fig. 19. Also shown are

sources Ia~
> and b

5
> from the zeroth-order equivalent circuit. Figure

19 is a complete first-order equivalent circuit for scattering represen-

tation. The corresponding imrnittance representation will be derived next.

Fig. 20 shows a small parallel perturbation on a MTL. The perturba-

tion is described by

IVL> = VR> ‘ 
(94)

and
11 2> = ~ 

“
~
‘
L
> (95)

Kirchhoff current law requires

Il L> = 1
2
> + 

~
IR> 

V
(96)

change variables IV> and II> into a> and I b> according to (35) and

(36). Then, (94) and (96) become:

~V
(la L + IbL>) = ~V

(taR 
+ jbR>)

~!I 
(I aL> - I bL>) = Y ?{

~
( laL

> + bL>) 
+ !~

-
~ 
(I a

R
> I bR>)

Miltiply the first equation from the left by M~ and the second equation

by M~
1. Use (C-46) and (C-47) to obtain
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I
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-

Fig. 20. Small parallel admittance perturbation on MTL.

1L> 
__________ 

IIR > ~~~~~ I lL >

L z
+ 

I~~>

‘/1)/I

Fig. 21. ~nall series ii~pedance perturbation on ~!FL.
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laL> + bL
> = taR> 

+ bR>

laL> 
- lbL> = ~

IaL> 
+ X1bL> + 1aR> - jb R>

where the normalized admittance matrix is introduced as

X W Y M  . (97)

By subtracting the above two equations one obtains

IbL> = - (2U+L)
~~LIaL

> + 2(2U+L)
~~ Ib R> . (98)

When the normalized admittance matrix is “small” [19] it is possible to

use the first two terms from Neumann’s series:

(2U +~~Y’

Retaining only the linear terms in ~~~~, (98) is approximately given by

- 
IbL> 

- •
~~

•
~~~~~ 

aL> + (LJ + 
~

-
~

)IbR> . (99)

Next, consider a small series perturbation in Fig . 21, described by

IL
> = J I

R
> 

‘ (100)

= 
~-‘‘L

> (101)

and
IVL> 

= lvi> + IVR> . (102)

Expressed by scattering variables

V MI(la L> 
- Ib L>) 

= MI ( I a R> - lbR>)

M~,(IaL> + IbL>) 
= Z M J ( I a L> - IbL>) 

+ M~( I a ,1~> + bR>) . 
V
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Introduce the normalized impedance matrix

z = M ~~Z M 1 . - (103)

Using the same approx imations as in (99) one obtains

• IbU> 
= 
!

Z la L> + (
~ 

- V
~ !)IbR

> . (104)

Now add both series and parallel perturbations as in Fig. 22. The

small reflections are simply added as follows

IbL> 
= 

~-(!-x) laL> + (U - -
~~~ ~~~ 

- 
~~

- 

~) IbR> . (105)

t

Invoking reciprocity and symmetry of the junction

IbL> ~~z-~~~ U~~~~~~-~~~ aL>

= 1 1 . (106)
t aR> U-~~ z - ~~ 1 ~~z - ~~~ bR>

Comparing (106) with (91), one concludes -

-jH + jE = - -~(z + ~)

Solving for z and z:
z j2H (107)

~~~= -j2E (108)
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Fig. 22. !~ffL with both series and parallel perturbations.
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Fig. 23. Equivalent circuit of the aperture junction with sources.
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From (89) and (90) it can be seen that all the elements of H and of
- 

- - E are real and proportional to frequency w. Thus, the el~nents of

z are represented by self and mutual normalized inductances

z = j w9.~ (109)

where:
Lu ~~~~~~~~~~~~~~~~ 

. (110)

These inductances may be positive or negative, depending on the signs

ofh .and h ..
xl xi
Analogously, the normalized admittance matrix consists of self-

and coupling cape tances:
-~~ ~~ 

-j ~~ (ill)

where the elanents of c are

c1, = EX~eeyi (Xo~
o)eyj (Xo~

o) . (l i2)

The negative sign signifies that the capacitance is negative if the pro-

duct eyieyj comes out to be positive. A note of explanation is necessary

on the meaning of the coupling capacitance c1~ (when i 
~ 
j). SVICh a cir-

cuit element does not exist in lumped-circuit theory. It signifies that

the current at the port i is proportional to the rate of change of -~ro1-

tage at the port j, the constant of proportionality being defined as a

coupling capacitance.

Finally, to obtain the actual impedance matrix 2, (103) has to be

denormalized as follows

(113)

So

VVVV_AA~~~~~~~~~~ A~~ tVAAA V~~~~~~~~~~~ JT~~~~~ 
-- 

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Similarly, the denormalized admittance matrix is

-i~ M~ c M ~ . (114)

Note that all the matrices on the right-hand sides of (113) and (114) are

real, thus the equivalent circuit is easy to interpret.

When also the voltage- and current sources from 
- 
(52) and (55) are

included in the circuit, the complete first-order equivalent circuit takes

the form shown in Fig. 23.

This representation is valid below the first resonant frequency

of the aperture. For a circular aperture of radius a the lowest resonance

appears at [20]

k a = l . 8 4 1  -

Thus, the representation is valid for frequencies

f << 87.9.106

For an aperture of radius a = 10 an, the equivalent circuit is valid for

f<< 880 M-!z. The validity of the equivalent circuit could be further ex-

tended in the region close to the aperture resonance by the methods

described in [21) , which will not be pursued here.

The circuit diagram of matrix 2 for a 3-conductor system is shown in

Fig . 24a. The self inductances are denoted by L11, L22 , and L23, and

[ 20] R. E. Coh n, Foundations for Microwave Engineering, New York:
McGraw-f-fill, 1966, p. 111.

t2ll G. L. Matthaei, L. Young, E. £4. T. Jones, Microwave Filters,
Impedance-Matching Networks, and Coupling Structures, New York:
McGraw-Hill, 1964, p. 242.
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Fig. 24(a). Impedance perturbat ion circuit.
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Fig. 24(b). Admittance perturbation circuit.
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the mutual inductances are denoted by L12, L13, and L23. The voltage

V1 is then given by

V1 
= jc~(L11V1 + L12V2 

+ L13V3)

Analogous expressions are valid for V2 and V3. This circuit is familiar

from the conventional, circuit theory and it does not require further

ccnnents. However, the circuit representation of the matrix Y is some-

what unconventional. The self capacitances are denoted by C11, C22
and C23, while the coupling capacitances are denoted by C12, C23, and

C13. The current Ii is given by

= -jw (C11V1 + C12V2 
+ C1~V~)

and similar expressions may ‘
~~~~ written for 12 and I3~ The negative

sign signifies that all these capacitances are negative, as compared

with the conventional capacitances. From the point of view of energy

balance, the negative capacitance is an active element, capable of

supplying the energy to the rest of the network. This may be considered

as an inconsistency of the equivalent circuit of the aperture, but it

will be shown that these negative capacitances are extremely small.

Furthermore, the negative capacitance can be thought of as the element

which represents missing capacitances on a uniform transmission line which

is perturbed by the aperture. -

The values of the elements in the equivalent circuit from Fig. 24

will be next computed for a 2-conductor parallel-plate M~L described

in Section IV. For a circular aperture of diameter d = 2 cm the electric

modal functions are computed from (68)
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e 1(x0,0) = - 
-6.1358 = 613.58y 110

e (x ,0) = ~~369~ = -236.90y 1.10

I
The values of the magnetic modal functions 4at the position of the

aperture are found from (69)

h
~i
(xø,0) = -0.81491 h

~2
(x0,0) = 0.42212

From (110) and (10) the normalized inductances are obtained as

= 1.1127 • io~
2, L22 = 2.9855 • l0~~~ L12 = -5.7636 

. l0~~~

For the frequency 1 GHz , the normalized reactances are

= 6.9913 l0~~ 
~~ 22 = 1.8758 • 10~~ , = -3.6214 . l0~~

Similarly the normalized susceptarices in parallel with the MI’L are

found from (112) and (10)

wc11 = 1.3963 • io 2 = -5 .3909 • l0~~ ‘ ~~22 
= 2.0814 . ~~~~~~~~~

Therefore , even at the highest frequency of interest for EMP calculations ,

the normalized reactances and susceptances are small numbers. Thus it

is expected that they do not cause appreciable reflections when a wave

is propagating along the MrL.
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Consider that an incident wave aL> is coining from the left

toward the equivalent circuit of the aperture in Fig. 22. Assuming

that the right-hand side of the equivalent circuit is terminated in

an infinitely long MTL , it is of interest to find IbL> in terms of

aL>. Since for an infinitely long MFL the vector bR> vanishes,

the equation (106) gives

bL
> = ½(z-y) la L>

Therefore, the reflections due to the presence of the equivalent cir-

cuit on a uniform ~fI’L are determined by reflection matrix r

= ½ (~-~) 
= ~~ll 

+ WCfl ~~l2 + 

~~l2

~~l2 + WC12 ~~22 
+ 

~~22

For the case under consideration, the reflection matrix is

1.0478 . io 2 
-9.0123 • l0~~

-9.0123 • l0”~ 3.9572 • 1o~~

It can be seen that the reflected amplitude of the first mode is only

1.05% of the incident amplitude for the same mode. The other reflections

are even smaller than 1%. At lower frequencies all coefficients of the —

ref lection matrix are proportionally reduced. This fact justifies

the procedure from Section IV of computing the voltage waveforms by

entirely neglecting the presence of inductances and capacitances in

the equivalent circuit.
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It is of interest to investigate the equivalent circuit of the

aperture on a single-conductor transmission line . The geometry of the

problem is such as specified by Fig. 3: a round wire of radius r is

placed in parallel with the ground plane, so that the center of the

L. wire is elevated above the ground plane for distance d. The circular

aperture of radius a is located at x = x0, y 0, z = 0.

When N = 1, it follows from formulas in the ~ppendix C that

- - matrices and reduce to simple scalars:

4 4

M~~= ~[j:- ,

where C’ and L’ are the distributed capacitance and inductance of the

single-wire transmission line. When the subscripts i and j are omitted,

the normalized inductance from (110) beco~nes

2. =

and the normalized negative capacitance from (112) becomes

c =

The normalized modal functions h
~ 

and e~ for the TEM mode of a single

wire above the ground plane have been derived in [13] as follows

[13] D. Kajfez, “Excitation of a Terminated ID-I Transmission Line Through
a Small Aperture,” Interaction Note 215, July 1974.
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a

h

~ 

= 
~~~~~~ (x~ + h2)

- - nh
ey 

- 

~~~~

_ (x0~~+ h
2)

where h denotes the reduced height of the wire:

h = v ’2  2d - r

In order to obtain the actual values of the equivalent inductance and

capacitance, the values are to be denormalized according to (113) and -

V

(114):

Z jwL=jwM~
2z

Y = -j wC = -j~~I
1
2
y

The values of L and C are, therefore

2
L 

~
iae 2 

h 
2 

(115)
it (x0 + h2)

C = ca 
Z0
2(x0

2 + h2)2 
(116)

where
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= 60 cos h4 (~)

The similar formulas have been derived by Lee and Yang [22]. Their

formulas (20.a) reduce to (115) and (116) in the case of a thin wire

(r << d, h d). For thick wires it is believed that (115) and (116)

are more accurate, because the exact TEN modal functions have been

used in the derivation.

[22] K. S. H. Lee, F. C. Yang, “A Wire Passing by a Circular Aperture
in an Infinite Ground Plane ,” Dikewood Corporation , February 1977.
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SECTION VI

INTERACTION BETWEEN AN APERTURE AND A SINGLE WIRE

In this section we examine the validity of the assumption that the
dipole moments in the aperture can be determined from the plane wave exciting
the aperture ignoring the presence of the £411. This assumption has been
used to derive the model for aperture coupling to the lines in the preceding
sections. For simplicity , we treat only a single wire line over a ground
plane. It is possible , in principle , to extend the analysis to treat a ~11’L
backscattering into the aperture by superimposing the backscatter from the
individual lines , accounting for the mutual interaction of the various con-
ductors . The general situation is too difficult to treat here , however. As
an additional simplification , we assume the conducting line is bare.

Referring to Figs . 2 and 3, in addition to the plane wave fields ~~xt

and j~ xt exciting the aperture, we must now consider aperture fields
~int ~int - . -E and H which are the fields reradiated from the transmission line.
These fields are linearly related to the dipole moments in the aperture and
we show in the following that they can be written as

H~~
t = t C  (117)

- 

E~~
t teCey (118)

where tm (te) is the x(y) component of the short circuit magnetic (electric)
field at the aperture reradiated from the l ine due to the appropriately
directed unit magnetic (electric) current moment in the aperture. In the
absence of any other sources in the interior region, Eqs. (8) and (9)
become with (117) and (118), -

ext-Jwiic~ Hc~~ — ___________

V 6S

-~~ 
- ~~~~~~~~~~ 
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p

ext
jwcc~ B

c = e y s
ey 1+j (A)EX~ t

It is easily seen that the coupling fr om the line to the apert
be neglected if it can be shown that

wji ct t <<1 ,m m

~~~~~ ~e~e 
<< 1.

In the following we determine te and tm~ the aperture fields s
the wires due to unit electric and magnetic dipoles in the ape

Beginning with the dipole sources 
~e 

and 
~m 

(see, e. g.,
and a single wire in the internal region , the ground plane is
that the dipole and wires are imaged as in Fig. 25. Note that
doubles the current moments of the dipole sources . Transverse
nates = (p ,~ ) and j ,  = (p .,~~.) measured from the wire axis a
wire axis, respectively, are also introduced in Fig. 25. The
establishes the location of the aperture with respect to the w

The fields due to the dipoles in the absence of the condu
determined from free space magnetic and electric vector potent

-jkI
~
-xo~~I

p c  e
A = ey
ey 2iT [~ -

r.
= m

respectively, where
r = X a x +Yay +Za z

- 
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Fig. 25. Geometry of wire over a ground screen with equivalent dipole mome:
representing an aperture .
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The currents on the wire and its image are ~ssumed to be entirely z-di
but in opposite directions. Hence they determine a magnetic vector po
A

~ 
which can in turn be used to determine all field quantities. Bound

conditions require the z-component of electric field to vanish at the

of the upper wire in Fig . 25; however , it must vanish everywhere inter
the wire as well and if we restrict our observation to the wire axis,
only the total or average current 1(z) from the upper wire contributes

the vector potential there. This choice of the observation point thus

out of the problem any circumferential variation in the current on the
wire; the cireumferentially vary ing currents on the image wire do , how

contribute to the vector potential at =~~. But if the wire is thin a
sufficiently far from the ground plane in terms of the wire radius, i.

- kr << l ,

r < < d ,

then the image wire may essentially be replaced by a line source along
image wire axis which carries ~ current 1(z) directed opposite to that
upper wire. In other words, under conditions (125) and (126) , if the
wire is replaced by multipole line sources located at 

~~~~~~~~~~~ 
the c ntr

of the dipole , quadrupole and higher order multipole terms can be ne~
compared to that of the monopole current filament 1(z). Thus the magr

vector potential along the upper wire axis due to the wire and image c
is approximately

- 

~j kJr2+ (Z~ z~) 2 
e jk/4d2

~~A -
~~~ -- I(z ’) e 

- _ _ _ _ _

4) / r 2-4- ( z-z ’) 2

Along the axis of the upper wire E~ must vanish , that is
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~~~ 

(k2+VV*)(
~y

1
~
tey6/tz) - ~~

Vx (
~~x

Fmx)] = 0 (128)

or writing out the desired components,

1 3 + k 2 A 1 ey ~~1 mx
~~~ z 

- 

- 

j
~~€ aza~ ;~~ ~y ;. -

~

(129)

Eq. (129) with (123), (124), and (127), isanintegro-differential equation for
the current 1(z) induced on the transmission line by current moments cey and

~~ 
in the aperture. In order to determine the current we introduce the

Fourier transform pair

1 
_jk

~
Z

~p(z) = — 3 i~(k~)e dk
~ 

(130)

- 1 C’ +j k z
ip(k ) = — 

J 

~p(z) e z dz (131)

where the wavy line indicates Fourier transformed quantities. Writing the

current in (127) as an inverse transform and making use of the identity

-jk/p2+(z-z’) 2 -
. 

-

e 1 ‘ ~2’ ~ 
( z z )

_________  

-
~~

-
~~ I H~ ‘(k p)e dic (132)

2 V Z
Ip +(z-z ’)

- - 
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1~~~ 2where k~ = v’k’ -k
~~ ~

Reke>O , Im kp<0, (127) becomes

p

4j(2it)312 f f5 I(k~) [H
~
2
~

(k r) - H~
2
~(2k~d)] e

J
~~~~~~

Z
~

p (133)

-jk~z 
-

x e dk~dk~dz ’

I

Noting that
1’ -j ( k -k ’)z ’ -J e Z Z dz ’ = 2inS (k

~
_k
~

) (134)

I -~~~

(133) simplifies to the transform representation

5 I(k~) [H
~
2
~

(k
~
r) - H~

2)(2k~d)le
J z dk1 (135)

Si-~iilar1y, we express the right hand side of (129) in transform representa-

tion:

2 r -jklr-p 01
- 3A ey = 

~2 
) 

lic ey e 1
~~ L 2-i’- 

~~~~~~~ 
J P~~~~~

2 r -jk z
= 

4J~lT~~ ~~~~~
)P 3 I-I~

2
~( k I - 0 I )e  Z

= 

P Cey k~k U~
2
~ (k Jx~+d 2 )e

3 Z dk
41T1f 2+d 2 J

- 70 (136)
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r jkJ~~ 0I
aFmx — 

~ 
cc~~e

~y ~~~~ 
- 

~~~~ L 2-ri i;-;~i

= 

~~ 5 H~2)(kpl;~~OI)e ~

= I f k~I42~ [k ~/c~ i~d
2] 
e
~~~~

c1k
~

4~h0
+d

- 
(137)

Substituting (135), (136) and (137) into (12’)) and taking the Fourier

inverse of the resulting equation yields finally the transform of the current,

I k - j v~~~ d 
H~

2
~ (k~h~ + d2 J kCmx 

- k( ~) 
- 

kp/x~+d
2 H~

2
~ (k r) -H~

2
~ (2k~d) Z ey

= I
m

(k
z) 

+ ‘e~~z~ 
(138)

where Im (kz) and Ie(kz) are identified as the partial currents arising 
from

the corresponding source terms cmx and Cev~ 
respectively. Note that is

an even function whereas ‘e is an odd function of the variable k
~
.
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The total line current can be obtained by taking the Fourier inverse

of (138). Our interest, however, is in obtaining the fields that the wire
and image currents scatter into the aperture and these can be found most
easily from the vector potential expressed in terms of the current transform .
The vector potential at an arbitrary point is obtained by again treating

— both the line and its image 
a: 

current filaments 
:t 

~~~~~~~ and 
~~~~~~~~ 

respectively:

1 -JkJp
~
+a
~
(z-z ’) I

- A
~ 

= 

~~ J I(z ’) { e 
(4

~
(z-z’)j 

- ] dz ’

= f T(k
~~
)[H

~~
2

~~( k t j )  - H (2) ( k ( + ( ) J e
3 Z dk

(139)

where again (132) and (134) have been used. The desired field quantities

in the aperture are

2
i 

___- 

~~~ 
ay.~~ x=x0,

y=z=0

jd 
2 2 J ~~~~~~~~~~~~~~~~~~~~~

2/2~~)c/x0 + d

= 
jd 

2 
f  ~e~~z z kp~~

2
~ [k~~~ + d~~dk~

2I2~~~Ix0 + d

- 

Ceyfl d2 r~ 
k~~~~

2) {k IX~+d2J] dk 
= t C (140)- 2~k J H~

2
~ (k~r) - H ~

2
~ (2~~d) e ey
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int _ 1H --- — x=xxs p a y  o

= d 

2 
f i(k

~
)k
~
H
~
2) [k~h~+d 2j 

~2j/2~ /x~+d ~~

= 

2j~~~~/x~~~ 
f  Im (kz)kpH~

2) 
1kp~~ ÷d1 ~~z

= 
c k  d2 (~

‘ 
[&2 {k h2+d2 

~~2 rrr~ x~+d
2 

~J H~~~(k r) - H~
2
~ (2k d)

tmC (141)

where we have used the even and odd properties of and 
~e 

to appropriately
simplify the integrals (140) and (141).

Returning to the examination of conditions (121) and (122), we first
note that the four parameters k, x0, d, and r in the integrals can be
reduced to three parameters if all distances are measured in terms of wave-
lengths. Thus, we examine

(SF) (k~) 3(kd)2 
~ 

(kx0, kd, icr)
WP%t = in (142)

( b c 0) 2 
+ (lcd) 2
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(SF) (kL) 3(kd) 2 
~ (kx 0, kd, kr)

WC
~
1e
t = e 

2 
e (143)e (kx 0) + (kd)

where we have introduced the aperture shape factors defined as

(SF) — 4 (144)

- - — e
- r)e~~~~ —

2.

where and ct~ are the aperture polarizabilities and 2. is the largest aper-

ture dimension. The shape factors have been determined for a variety of
aperture shapes by numerical and experimental means [11-12] and are typically
somewhat smaller than unity. The normalized functions and 

~e 
are

defined as

ri(x~+d
2)

t (bc0, kd, icr) =
~~~ 2 2m lc d m

= r H~
2
~ {J(l~a

2) [(JQ~~
2+(kd)2J) 

2

2-ri 

~
) 

H~~2)[w4~~c*
2 krj - H~~

2
1~i~~~~~kdJ

(146)

(11] S.B. Cohn, “Determination of Aperture Parameters by Electrolytic-
Tank Measurements” , Proc. I .R. E. ,  Vol. 39, pp. 1416-1421, November
1951.

[121 S.B. Cohn, “The Electric Polarizability of Apertures of Arbitrary
Shape,” Proc. 1.R.E., Vol. 40, pp. 1069-1071 , September 1952 .
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x2+d2

t (kx0, kd, kr) 
~~2 ~

‘-p 
e kd ri e

V 

1 1 a2 [H~
2){/~l~a

2) [(~~0)
2+(kd)2]J] 

2 
da

= J H~~ [ v~I~ i c r ]  
- H~

2) 

~~ 
kd]

- (147)

Since our assumption that the aperture may be replaced by current moments

~~ ~m 
requires that the aperture be small, say less than a tenth of a

wavelength, then (k2.)3 < .25 and since

(SF) e m  < 1 
(148)

2
2 2 ~~~. 

(149)
(10(0) + (kd)

we need only demonstrate that

~m 1 << 1, (150)

1
~e

1 << (151)

to show that the wire does not sufficiently excite the aperture that its

effect needs to be accounted for in computing the aperture dipole moments.

The integrals (146) and (147) are numerically evaluated by (1) noting

the syninetry of the integrals about a = 0; (2) integrating numerically using

Gauss-Legendre integration on the interval 0 .~~. a ~. 2, with a singularity

of the form 1/Ca-i) removed; (3) adding a contribution from the branch point
at cz 1; and (4) integrating numerically on the interval 2 ~~~. a ~ using
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L

Gauss-Laguerre integrationwhich assumes an exponentially decaying integrand.

The appropriate rate of exponential decay in the integrand can be determined
from the large argument approximations to the Hankel functions appearing in
(146) and(147) .

From the numerical calculations, Figs. 26-33 show that over a wide range
of parameters kx0, kd, and kr, Eqs. (150) and (151) are indeed satisfied. How-
ever, when the wire is directly above and close to the aperture (kx0 = 0 and
kd small) , (150) and (151) are not satisfied. If the wire is close to the
aperture , however , the aperture must be small in order for the dipole moment
representation to remain valid. Calculations by Lee and Yang [22] indicate
that the dipole moment representation of a circular aperture (without considering
backscattering from the wire) is accurate to about 10% only if 2k2~ < kd and it

seems reasonable that this upper bound on the maximum aperture dimension would
hold for other aperture shapes as well. Using this as an upper bound on k2

and noting that tm and te are largest when kx0 ~ 0, it is sufficient to show
that

~~~~~~~~~~~~~~~ << 1 (152)

<< 1 (153)

in order to exclude consideration of wire-to-aperture coupling. These quanti-

ties are plotted in Figs. 34-35. The figures show that the effect of the wire
on the aperture dipole moment is negligible whenever the representation of the
aperture by dipole moments is valid.

This completes the task set for this section, but it is interesting and
instructive to return to the current transform (138) and use it to find the
current on the line by inverse transforming:

[22] K. S. H. Lee, F. C. Yang, “A Wire Passing by a Circular Aperture in an
Infinite Ground Plane,” Dikewood Corporation, February, 1977.

76 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
- :  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -..~~~.- .

- -
~~-

---- -

1

- ‘_ 
I0~ i(R~ 0.1000

m 0 1(0= 0.2000
- 0- 0 1(0= 0.3000

~~~~~~~~~~~~~~~~~~~ 1(0= 0.4000
X ) 1(0= 0.6000
G— 1(0= 0.7000
+ 1~ KO~ 0.8000I X X 1(0= 0.900G
z—z 1(0= 1.6000

k

\ 

1- 1 1(0= 0.5000

0.00 0.20 0.40 0’.60 0
1
.60 1.00

- 
KX

Fig. 26. ~ag~iitude of tm for a wire of radius icr = 0.1.
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1 p _jk
~z

I(z)=— I I(k )e dkv7
~~J z z

-

jd C u(2)Ik 1x2+d2) kc
= 

_ _ _  j .  
1 P 0 1 ~~ - k c

~rh~÷d
2 3 k [H~

2)(k~r) - H~
2)(2k~d)1 

z ey

-jk~zx e (Ike (154)

The contour of integration in (154) is shown in Fig.36 which assumes that

the medium is very slightly lossy so that k is complex. Branch cuts in the

k
~ 
plane are chosen along the loci Imk~=0 and k~ 

is assumed to be in the

sheet Im k 0 so that the radiation condition is satisfied for each component
cylindrical wave in the integral representation (154). If z is positive, the
contour then may be deformed around the branch cut as shown in Fig.37 (where
k has also been allowed to become real) and the integral becomes

- 
1(z) = 1 (z) + 1 (z) (155)

where

c
I (z) = ey 

2d(x0+d )log -~~

-

2ceyd 
!42 Jk 2~~2)(x~÷d 2)) 

_ _ _ _ _ _

+ 

dx~+d
2 j

0 

Im 

r) - H~
2
~ [2h2 -8 2 dJJ ~~

2 B2

+ 

2c~~d 
JIm  I H~

2)(/(k2+a2)(x~+d2)) 
ae~~~da

0 
~ 
H~
2
~ 1 /~

2
~~

2 
rJ - ~(2 ) 

(V
2h2+a2 dJJ h2~Q2 

—
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~ f~~

2 82 r) - H~
2
~ [2~~

2 82 d~~ ~~
2 82
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2cjd J imf H~2)f~~~~a

2)(x~+d
2)

tvrh~+d
2 

~ 
(_ u~~

) 
f~
42+~2 r] - H~

2
~ (2h2+~

2d~ J ,4~2~~2

= Im
(_Z)

~ 
z > 0

(157)

The first two terms on the RI-IS of (156) and (157) represent the TEM modes
excited by the electric and magnetic dipoles , respectively, and arise from
the branch point contribution from the deformed path in Fig. 37. The remaining
two integrals in each expression represent the current due to the propagating
and the evanescent spectrum , in that order. Noting that the integrands for the 

V

evanescent fields are bounded by some number C, say, we can bound those inte-
grals by the integral

J Ce~~~d~ 
= = ~~1/z)~ (158)

The integrands for the propagating fields are of bounded variation and hence,
by the Riemann- Lesbegue lemma [23] are C(l/z) as well. Hence, for large z,

[23] E. T. Whittaker, G. N. Watson, A Course of ~vbdern Analysis, New York:Cambridge .Press, 1973, p. 172.
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1(z) {Cey - ~~ +~~ (l/z) (159)

- 
which shows that at large distances from the aperture , only the T~ 1 wave

-
~ is significant.
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APPEN DIX A

LUMPED ELEMENT TRAVELING WAVE SOURCE

In many network computations it is convenient to use scat-

tering parameters , defined in (ref. Al), (ref. A2)

a = 1 (Vk + ZokIk) (Al)k 2~~~
—

1 *
bk 

= 
~~k 

- Zokik) (A2)
2/~~~

In the above , Vk and are the actua l (not normal ized)  vol tage
and current at port k of an N-port , while Zok = R ok + jX Ok is the

normalization impedance at port k. The asterisk denotes a com-

plex-conjugate number. When scattering representation of net-

works is used , it is convenient to replace the voltage and cur-

rent sources with corresponding traveling-wave sources . It seems
that no convenient circuit elements have been found for that pur-
pose. Penfield and Rafuse (ref.A3) have used a symbol reminis-
cent of a voltage source in combination with a directional coupler ,
such as in Figure Al. However , this symbol represents a pure
traveling-wave source only in the limiting case when the coupling
tends to zero and the voltage source tends to infinity. For any

finite value of the coupling, a fraction of the energy from the

main guide will be unavoidably absorbed in the matched termination .

Al. D. C. Youla , “On Scattering Matrices Normalized to Complex
Port Numbers , ” Proc. I.R.E. Vol.  49 , p. 1221 , Ju ly 1961.

A2. M . T. Carlin , A. B. Giordano , Network Theory, an Introduction
to Reciprocal and Nonreciprocal Circuits , Englewood Cliffs :
Prentice Hall , 1064 , pp. 326 and 144.

A3. P. Penfield , Jr., R. P. Rafuse , Varactor Applications ,
Cambr idge: M .I.T. Press , 1962 , p. 26.
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A convenient source of the t r ave l ing -wave  to be proposed
here is a combination of the voltage source and the current

source such as shown in Figure A2(a). To verify this, write the

Icirchhoff laws for this circuit:

‘1~~~
’2~~~

’s 0 (A3)

V
1 

- V
2

+ V ~~~= 0  (A4)

Take the normalization impedance for the port 1 to be Z01 and

for the port 2 to be 2 02• Then using (1) and (2) obtain the

fol lowing:  
____

z02 -z0~ ~J R 01 Z 02 +Z 0~ z01i~ -v~
b
1 ~02 ÷z01 

a1 02 Z 01 +

= + (A5)

Z +Z~~ Z ~~~~ Z I+V
b Il 01~ 01 Ui 01 02 02 s s

2 ~~~~ Z 01 Z 02 Z 0~ +Z 02 
a 2 01 Z 01 

+

A convenient choice of the normalization impedance , is as

follows :
= Z

0~ 
= Z

0 
= R~ + jX 0 CM )

When such a choice is made the diagonal  terms in (A5) become zero
and the two port in Figure A2(a )  becomes an al lpass:

b
1 

0 1 a1 Z0I~ -V~
= + 

1 (A7)
b
2 

i. 0 a2 
2/c Z~ I5+V

Furthermore , the source of the outgoing wave at port 1 can be
made equal to zero by choosing

(A8)

92 

~~ -~-~~V - V .  -



— - 
-V—-V = -~ ~~~~~

.
~~

— -—,--- V—
~~~~~~~~.-V- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Fig. Al. Conventional symbol for traveling-wave source.

b~V8
-0

V1 
‘-~-.----*..- b2”-”--~’--

- T - 
-.~~-

-
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—0 0~ -o

- 

(a) (b)

Fig. A2(a). Combination of voltage and Fig. A2(b). Proposed symbol for
current sources. traveling-wave so..irc~
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